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Abstract 

This project explores the feasibility of combining geologic insight, geostatistics, and high-perform- 
ance computing to analyze the capabilities of 3-D electrical resistance tomography (ERT). Geosta- 
tistical methods are used to characterize the spatial variability of geologic facies that control sub- 
surface variability of permeability and electrical resistivity Synthetic ERT data sets are generated 
from geostatistical realizations of alluvial facies architecture. The synthetic data sets enable com- 
parison of the “truth” to inversion results, quantification of the ability to detect particular facies at 
particular locations, and sensitivity studies on inversion parameters. 

INTRODUCTION 

A geophysical tomograph does not directly convert into a permeability field, not only because the 
geophysical property does not directly correlate to permeability, but because the resolution of a 
tomograph varies with location. The resolution may be inadequate for characterization of flow and 
transport processes, so that means for interpreting the ERT inversion in a hydrogeologic context are 
needed. The tomographic inversion is nonunique, that is, different parameters can yield similar fit 
to the data. The degree to which a tomograph will provide additional insight is difficult to quantify 
and depends on the survey configuration, the characteristics of the subsurface heterogeneity, and 
prior knowledge of site geology 

This study examines the resolution and parameter sensitivity of electrical resistance tomography 
(ERT) using synthetic data sets generated from a realistic representation of a geologic system. ERT 
images subsurface electrical resistivity structure by mathematical inversion of voltage measure- 
ments induced by current applied to an array of electrode pairs. The, inversion is mathematically 
nonunique and sensitive to data noise and the initial “roughness coefficient,” which controls the 
degree of smoothness in the inversion (LaBrecque et al., 1996). EKC is a promising tool for hydro- 
geologic characterization because in freshwater alluvial systems electrical resistivity correlates with 
clay content (Waxman and Thomas, 1974), which strongly influences permeability, and resistivity 
contrasts are typically much larger that seismic velocity contrasts. 

From a geologic point of view, the origin of variations in permeability may be very clearly 
related to geologic processes, to the extent that a geologist can predict realistic (but not deter- 
ministic) patterns of spatial variability However, conventional geologic interpretation by means 
of cross-sections or fence diagrams would require painstaking efforts to develop multiple, geo- 
logically plausible 3-D models. Alternatively, geostatistical methods can quantitatively generate 
three-dimensional (3-D) “realizations” of geologic architecture. 



This project employs geostatistical methods to gain insight into the capabilities and limitations 
of 3-D ERT inversion. One difficulty with evaluating the accuracy of an ERT tomograph is that 
the“truth,” the true spatial distribution of electrical resistivity, is not known. Granted, synthetic 
data sets have been inverted to illustrate the capabilities of ERT, but these examples are usually too 
simplistic and not relevant to site-specific geologic heterogeneity 

Alternatively, this project performs inversions on synthetic ERT data sets derived from 3-D re- 
sistivity distributions based on geostatistical realizations consistent with geologic architecture ob- 
served in the alluvial fans underlying the Lawrence Liver-more National Laboratory (LLNL). The 
synthetic ERT data sets were generated using the high-performance flow finite-difference model- 
ing code ParFlow developed at LLNL (Ashby, 1996; Tompson et al., 1998). The synthetic ERT 
data sets not only enable comparison of inversion results to the “truth,” but yield insights into the 
sensitivity of inversion parameters. The geostatistical methods employed enable a simplified quan- 
tification of inversion results in terms of the probability of locating a particular facies at a particular 
location. 

The experimental procedure consists of the following steps: 

1. developing a realistic geologic facies model and translating that into geostatistical parameters, 
2. generating multiple geostatistical realizations conditioned to borehole facies, 
3. assigning plausible resistivity values to each facies based on previous ERT field work, 
4. generating synthetic ERT data sets using ParFlow, 
5. inverting the synthetic data sets using the program MultiBH, 
6. quantifying the degree to which ERT improves the subsurface characterization, and 
7. performing sensitivity analyses on inversion parameters. 

GEOLOGIC INTERPRE’IXTION 

In the unconsolidated alluvial sediments underlying LLNL, spatial variation of permeability at the 
scale (-0.3 m vertical, -3 m lateral) relevant to intra-well flow and transport typically spans over 
five orders of magnitude and is primarily related to the spatial distribution of geologic facies. The 
term “facies” refers to rock categories with distinctive and identifiable characteristics, which are 
related to textural and depositional properties for the LLNL alluvial system. These facies are recog- 
nized in core samples and excavated exposures as follows: 

Facies Proportion Description 
Jr : channel 12% well sorted sand with gravelly lag deposits, fining upward 
~2 : streamflood 8% poorly sorted gravel supported by a silty/sandy matrix . 
j3 : bardevee 21% silty fine sand 
f4 : jloodplain 59% silt and clay, some indurated and with caliche 

Our geologic interpretation concludes that high permeability zones consist of an interconnected 
network of channel and streamfrood deposits. These high permeability zones correlate to rela- 
tively high electrical resistivity zones.’ 



GEOSTATISTICAL ANALYSIS 

A categorical (indicator) geostatistical approach was used to quantify spatial variability of the ge- 
ologic facies. Using core data form several boreholes at LLNL, a matrix of transition probabilities 
(Figure 1) for the vertical direction (z) was obtained. The transitionprobabiZi& matrix entry tjlc(hZ) 
as a function of separation vector or “lag” h, is simply defined by 

tjli(h,) = Pr (Ic occurs at x+h, 1 j occurs at x} 

where x is a spatial location, and j and k denote “facies j” and “facies k,” respectively 
The solid line indicates a continuous-lag Markov chain or“matrix exponential” model defined 

bY 

-$k(hJ = exp [JW,] 
where R, represents the vertical transition rate matrix (Carle and Fogg, 1997). Transition rate 
matrix entries correspond to slopes at the lag origin, which indicate mean length or “thickness” 
for the diagonal entries and juxtapositional tendencies for the off-diagonal entries. The “sills” or 
t&h, + 00) indicate category proportions pk of the column entries. 

Borehole spacing is usually inadequate for direct measurement of lateral spatial variability. 
However, considering that the parameters of the Markov chain consist of the geologically inter- 
pretable concepts of proportions, mean length, and juxtapositional tendencies, the transition proba- 
bility/Markov geostatistical approach provides a framework for developing geologically plausible 
models of lateral spatial variability (Carle, 1998; Carle et al., 1998). A 3-D Markov chain model 
was used to generate multiple stochastic realizations of facies architecture conditional to the bore- 
hole data with discretization of Ax = 1.2 m, Ay = 1.2 m, AZ = 0.3. Figure 2 shows two 
realizations, where the exposed inner block is conditioned by borehole data at the four comers and 
is the region to which the ERT inversion is applied. The full blocks are used in generation of the 
synthetic ERT data. 

SYNTHETIC ERT DATA SETS 

Previous 2-D ERT surveys at LLNL showed correlation between electrical resistivity and geologic 
facies, with about two orders of magnitude variation in resistivity primarily attributed to variation 
in clay content (Ramirez et al., 1993). Accordingly, the faciesfl,f2,f3, andf4 were assigned 
resistivities of 100,20,5, and 1 ohm-m, respectively, for generation of the synthetic ERT data sets. 

The synthetic ERT data were generated using ParFlow, a high-performance parallel ftite differ- 
ence groundwater flow modeling code developed by LLNL (Ashby, 1996; Tompson et al., 1998). 
The flow simulation capabilities of ParFlow are intriguing in that very large problems can be rapidly 
solved with robust convergence. Considering that flow of electrical current in the subsurface is 
analogous to the flow of groundwater, this study adapted ParFlow for simulation of voltage re- 
sponse in application of ERX ParFlow employs a Tool Command Language script interface that is 
programmable (Welch, 1997), so thatthe ParFlow runs and output could be customized to mimic 
an ERI’ survey The finite difference’ grid was refmed with respect to the geostatistical grid to 
Ax = 0.4 m, Ay = 0.4 m, AZ = 0.3 m to ensure accuracy of the flow solutions. 
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Figure 1: Matrix of transition probabilities between facies as a fhnction of vertical lag. The intercept of the tangent at 
the lag axis corresponds to mean length. The model curves converge at the column facies proportions. 

ParFlow was used to generate 100 synthetic 3-D ERT data sets, based on four boreholes spaced 
at 14.4 m with 15 electrodes spaced at 1.8 m. Each data set required 60 ParFlow runs on a grid 
of 800,000+ cells. The synthetic ERT data permit comparison of EKT inversions to the‘k-uth,” 
facilitating sensitivity studies and enabling quantification of the ability to resolve intra-well hetero- 
geneity Figures 3 and 4 show close-up comparisons of realizations #ll and #13 and corresponding 
ERT inversions of the synthetic data. 

QUANTIFICATION OF PREDICTIVE CAP?ILJTIES 

Resolution of the ERT inversion generally deteriorates away from the borehole, such that the to- 
mograph yields a more smoothed image of resistivity structure at locations more distant from the 
boreholes. Obviously, one cannot expect to directly convert resistivity values to permeability val- 
ues. Resolution can be mathematically~,quantifkd for each of the cells of the ERT inversion (I&co 
et al., 1997). However; the more practical issue is how does resolution affect predictive capabil- 
ities, that is, how can one use the ERI’ tomograph for hyclrogeologic interpretation in light of the 
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Figure 2: Two stochastic realizations generated from a 3-D Markov chain model. 

variable resolution? For example, if characterization of hydraulic connectivity is of concern, how 
can the ERT inversion be quantitatively evaluated in terms of determining whether permeable units 
are continuous between boreholes? 

The synthetic data sets offer an opportunity to evaluate the predictive capabilities of ERT In 
a direct interpretation, one would attempt to convert the resistivity values of the ERT inversion 
into permeability In this study, the interpretation is posed with respect to resistivity categories 
and facies; given that the ERT inversion indicates a particular resistivity quantile (category) at a 
particular location, the probability that a particular facies occurs at that location is predicted. 

Let the indicator value Ij(x, d) defme whether an ERT inversion resistivity p(x) falls into the 
quantile C& defined by resistivity cutoff values cj(d) as a function of radial distance d from the 
borehole: 

4(x, 4 = 1 1, if&) E aj 
0, otherwise 

where qj is defined by cj(d) 5 p(x) < cj-i(d) with cj-i(d) > Cj(d) > cj+i(d). Let another 
indicator value J&c) define the presence or absence of facie? k at location x: . 

J/c(X) = ( 1, if facies k occurs at x 
0, otherwise 

Then, the probability Pr {k at x 1 p(x)} that facies k occurs at x given the ERT inversion resistivity 
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F igure 3: Comparison of ‘%u&,” realization #ll, to an  ERT inversion. 
Inverted region (inner block from F igure 2) is 

exploded to reveal internal 3-D structure. 
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Figure 4: Compa,rhn of “trd,” realization #l3, to an ERT inversion. Inverted region (inner block from Figure 2) is 

explodecj to reveal internal 3-D structure. 
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Figure 5: Matrix showing P(d), the probability of facies k occuring given resistivity quantilej as a function of distance 
d from borehole, as averaged fi-om 18 realizations and ERT inversions. 

p(x) can be estimated from the conditional probability Pjk(d) defined as: 

The entries Pjk(d) in the matrix P(d) are calibrated from the values of Jk (x) in the realizations 
and the values of Ij (x, d) in the ERT inversions. Figure 5 shows a plot of P (d) calibrated from 18 
realizations and inversions. A “noisy” Markov chain model was fitted to the data by the formula 

where Etp is a rate matrix. The resistivity quantiles are divided according to the facies proportions 
such that E {Ij(x, d)} = pj. For example, the PII (cZ) term in the upper left corner of the matrix 
represents the probability that channel (fl) occurs given that the ERT inversion resistivity value 
falls within in the highest quantile ql defmed such that E {11(x, d)} = 0.12, the proportion of 
channel facies. Prr (d) declines with distance from the borehole because of declining resolution. 
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Figure 6: Sensitivity study comparing P(d) from inversion results for two different values, 0.01 and 0.05, of the initial 
roughness coeffkient used in the ERT inversion. 

If resolution and accuracy of the ERT inversion were perfect, then Pil()) = 1; if the correlation 
between the ERT inversion and the realization were completely random, then Pi1 (d) = 0.12. In this 
example, 0.12 < PI1 (d) < 1, indicating the degree to which the ERT inversion improves prediction 
of the location of the high permeability channel facies as a function of distance from  the borehole. 

The off-diagonal terms indicate the probability of m isinterpreting a particular facies. For ex- 
ample, PI*(d) indicates the probability thatfloodplain (lowest resistivity facies) occurs given that 
the highest quantile ERT inversion resistivity occurs at x. If the resolution and accuracy of ERT 
inversion were perfect, then P (d) would correspond to an identity matrix for all d; if the correlation 
between the ERT inversion and the realization were completely random, then Pjk(d) = qk where 
qk are the quantile proportions. In this* example, the qk were chosen to correspond to the facies 
proporhns pk. 

i SENSITIVITY STUDIE% 

Two crucial parameters in the ERI’ inversion algorithm  are data noise level and the‘koughness” 



coefficient (LaBrecque et al., 1996). The data noise level can be estimated by repeated and recip- 
rocal measurements. However, experience generally dictates selection of the initial value of the 
roughness coefficient. The roughness coefficient controls the degree of weighting in the objective 
function devoted to minimization of roughness of the resistivity field. If a roughness coefficient of 
zero is assumed, the inversion process would likely produce a tomograph that matches the data very 
precisely, but with an unrealistically high degree of spatial variability of resistivity If the roughness 
coefficient is too high, the inversion may not converge, or the tomograph may be unrealistically 
smooth. The roughness coefficient is adjusted throughout the ERT inversion, however, the final 
inversion result is sensitive to the initial value. 

Figure 6 shows a comparison of P (d) for two different values of the initial value of the roughness 
coefficient, 0.01 and 0.05, applied to the same ERT data set. The P(d) values, although different, 
indicate that the resulting inversions have similar accuracy. 

CONCLUSIONS 

ERT provides a promising tool for characterization of 3-D intra-well heterogeneity. 3-D inversions 
of synthetic ERT data consistently detected major high permeability zones, locations of which are 
uncertain for the degree of spatial variability observed in the field. The practice of generating and 
inverting realistic synthetic ERT data sets provides means for conducting feasibility and sensitivity 
studies and is made possible by emerging geostatistical methods and numerical flow modeling 
capabilities. An important result is to qua&z3 the probability that a particular facies will occur 
at a particular location based on the ERT inversion. The geostatistical parameters can be tuned to 
site specific conditions, so that the method described in this paper may be applied to different sites. 
Practical implementation of the method requires only an accurate conceptual model of the geologic 
variability, assuming that the geologic variability can be described by the geostatistical parameters 
and that the resistivity variations are associated with the geology The method would be a useful 
tool for diagnosing the effectiveness of implementing an ERT survey before deployment of the 
field work. Future work will use ERT inversions as sol? conditioning to constrain the geostatistical 
realizations, with the goal of finding ERT inversions that are geologically plausible. 
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